Two-Dimensional Graphene with Structural Defects: Elastic Mean Free Path, Minimum Conductivity, and Anderson Transition
نویسندگان
چکیده
منابع مشابه
Two-dimensional graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition.
Quantum transport properties of disordered graphene with structural defects (Stone-Wales and divacancies) are investigated using a realistic π-π* tight-binding model elaborated from ab initio calculations. Mean free paths and semiclassical conductivities are then computed as a function of the nature and density of defects (using an order-N real-space Kubo-Greenwood method). By increasing the de...
متن کاملQuantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization
N. Leconte,1 A. Lherbier,1 F. Varchon,1 P. Ordejon,2 S. Roche,3,4 and J.-C. Charlier1 1Université catholique de Louvain, Institut de la Matière Condensée et des Nanosciences (IMCN), NAPS-ETSF, Chemin des Etoiles 8, B-1348 Louvain-la-Neuve, Belgium 2Centre de Investigació en Nanociència i Nanotecnologia, CIN2 (CSIC-ICN), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain 3CIN2 (ICN-CSIC) and ...
متن کاملElastic interactions between two-dimensional geometric defects.
In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects-point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress functi...
متن کاملAnderson transition in disordered bilayer graphene.
Employing the kernel polynomial method (KPM), we study the electronic properties of the graphene bilayers with Bernal stacking in the presence of diagonal disorder, within the tight-binding approximation and nearest neighbor interactions. The KPM method enables us to calculate local density of states (LDOS) without the need to exactly diagonalize the Hamiltonian. We use the geometrical averagin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2011
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.106.046803